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Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Multi-cores:

– 2 – 16 cores

– Designed for small-scale parallelism & for sequential performance

• Many-cores:

– 10s – 100s – 1000s cores

– Design for large-scale parallelism ONLY!

– Sequential programs will run much slower!

• If  they can execute
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What is parallelism?
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Serial Processor Parallel Processor

• Many processors executing instructions from the same 
program in parallel

• Instruction execution time is the same

• Program execution time is less!!
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• Many-core processing for increased parallelism
– HPC systems already include many-cores

• More parallelism → More performance

• Many-cores today (and tomorrow?)
– Cache-coherent Shared Memory

• Can they scale?

– Distributed Memory Clustered

• Are they efficient for fine-grain parallelism?

• Software Parallel Programming Systems
– Shared-memory

• Good on multi-cores, not evaluated on many-cores

• Need cache-coherence!

– Distributed-memory

• Good for large-scale distributed systems

• Programming is becoming an impossible task
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• Scalable Hardware:

– A non-coherent shared-memory many-core

• Scalable Software:

– Easy programming

– Non-blocking execution

– Doesn’t need cache-coherence support

– Exploits large amounts of  fine-grain parallelism

Scale performance on non-coherent 

shared-memory many-core processors

Data-flow!!
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• Non-coherent shared-memory many-core design

– Simulation-based

– With 100s of  cores

• A software parallel programming system

– Based on data-flow execution

– Scale performance to 100s of  cores

– Validate to real hardware

– Support for conventional programming APIs 

• OpenMP
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• Motivation

• Contributions

• Related Work

– Data-flow-based Programming Systems

– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline
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Data-flow Programming Systems
Characteristics of Dataflow 

Implementations
OmpSs

Triggered 
Instructions

Serialization 
Sets

OpenDF DTT / CDTT SEED
Statically 

Sequential
WaveScalar SWARM Intel TBB CnC Maxeler

Implementation 
(Software / Hardware)   

Software Hardware Software Hardware Software Hardware Software Hardware Software Software Software Hardware

Scheduling Policy 
(Static / Dynamic)

Dynamic Dynamic Dynamic - Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Dynamic - uses 

Intel TBB
Static

Memory Model 
(Shared / Private)

Shared / GPU Shared Shared - Shared Shared Shared Shared
Shared / 

Distributed
Shared Shared -

Needs cache-coherency Yes No Yes - - - Yes Yes Yes Yes Yes -

Number of cores/threads tested 24 32 32 - runtime - 32
128

Simulation
24 8 8 -

Max Speedup achieved
depends on 
application

22 16 -
1.46 / single 

core
- 16 83 8 8 8 230

How dependencies are 
expressed

directives in(), 
out(), inout()

Inserted 
Triggers

writable & 
read_only data 

variables
-

macro-based 
triggers

-

functions, 
shared objects, 
read/write sets, 

sequential 
segments

tokens/tags
C-macros API to 

represent 
Codelets

macro-API / 
explicit task 

dependencies

Inputs (gets()), 
Outputs (puts())

Kernels & 
Managers, 

Input & Output 
vars.

Programming Language C / C++ C / C++ C++ CAL Dataflow C / C++ - C++
Supports 

imperative 
languages

C C++
C++, Java, .NET, 

Haskell
Java with 

MaxCompiler

Contributions

Single 
programming 

model for 
homogeneous & 
heterogeneous 
architectures

● Spatial accel. w. 
8x greater area-
performa. than 

GPPs
● Less instr. in 

critical path over 
PC-based spatial 

architectures 

Prometheus C++ 
library that 
implements 

Serialization Sets

Implementation of 
MPEG RVC

decoder on CAL 
dataflow model

● High redundant 
code in apps

● Data-triggered 
threads

● Architectural 
support for DTT

● High memory 
parallelism, 
instruction 

parallelism and 
branch 

unpredictability is 
highly profitable 

for dataflow 
execution

C++ Software 
runtime library

● New dataflow 
ISA

● Less area 
occupied for logic

● More 
performance/area

● Unified single-, 
multi-node 
interface,

transparent to 
the programmer

● Parallel 
algorithms and 
data structures

● Scalable 
memory allocation 

and task 
scheduling

● CnC semantics w 
proof of 

determinism
● Exploit several 

types of 
parallelism

● Performance 
scalability

Less silicon area, 
less power 

consumption:
No 

instructions/instr. 
decode logic

No branch predict.
No GP caches

Conference / Date PPL 2011 ISCA 2013 PPoPP 2009
ACM SIGARCH

2008
HPCA 2009 ISCA 2015 MICRO 2011

ACM 
Transactions 

2007
2013 2007 2011

ACM SIGARCH
2011

Notes

● Based on StarSs 
and OpenMP

● Builds graph at 
runtime
● Task-

dependency graph
● Each task is 
executed once

● Using 
scratchpad 

memory
● Dynamic 
Instruction 
reordering

● FPGA Implem.
● New ISA 
extentions

● Supports all 
types of 

parallelism (Data, 
Task, Pipeline, 
Embarrassing)

● Not better than 
OpenMP or

Pthreads

Produces VHDL
code

● Remove 
redundant 

unnecessary 
computation
● Thread 

generation based 
on address data 

changes

Switching 
execution from 

OOO to dataflow 
at runtime based 

on application 
needs

● Based on 
Prometheus 
runtime of 

Serialization Sets
● This is the same 

as Serialization 
Sets

● Only measure 
the time for the 
parallel phase 

● Very difficult 
programming
● Work stealing 

across nodes and 
threads

● One scheduler 
on each 

thread/node, 
managing several 

codelets
● Overhead of 

runtime observed 
for fine-grain 

scheduling

● Rich feature set 
for general 

purpose 
parallelism
● Data-

dependency graph
● Each task can 

execute multiple 
times

● Comparison only 
with Pthreads

● Different system 
for each 

application
● CnC is a model 
that uses other 

runtime systems

-
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Characteristics of Dataflow 

Implementations
OmpSs Serialization Sets DTT / CDTT

Statically 
Sequential

SWARM Intel TBB CnC

Implementation 
(Software / Hardware)   

Software Software Software Software Software Software Software

Scheduling Policy 
(Static / Dynamic)

Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
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Memory Model 
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Programming Language C / C++ C++ C / C++ C++ C C++
C++, Java, .NET, 

Haskell

Contributions

Single programming 
model for 

homogeneous & 
heterogeneous 
architectures

Prometheus C++ 
library that 
implements 

Serialization Sets

● High redundant 
code in apps

● Data-triggered 
threads

● Architectural 
support for DTT

C++ Software 
runtime library

● Unified single-, 
multi-node interface,

transparent to 
the programmer

● Parallel algorithms 
and data structures
● Scalable memory 
allocation and task 

scheduling

● CnC semantics w 
proof of determinism

● Exploit several 
types of parallelism
● Performance 

scalability

Date PPL 2011 PPoPP 2009 HPCA 2009 MICRO 2011 2013 2007
ACM SIGARCH

2011

Notes
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and OpenMP
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Data-flow Programming Systems
Characteristics of Dataflow Implementations OmpSs SWARM Intel TBB

Implementation (Software / Hardware)   Software Software Software

Scheduling Policy (Static / Dynamic) Dynamic Dynamic Dynamic

Memory Model (Shared / Private) Shared / GPU Shared / Distributed Shared

Needs cache-coherency Yes Yes Yes

Number of cores/threads tested 24 24 8

Max Speedup achieved depends on application 8 8

How dependencies are expressed directives in(), out(), inout()
C-macros API to represent 

Codelets
macro-API / explicit task 

dependencies

Programming Language C / C++ C C++

Contributions
Single programming model for 
homogeneous & heterogeneous 
architectures

● Unified single-, multi-
node interface,
transparent to 
the programmer

● Parallel algorithms and 
data structures
● Scalable memory 
allocation and task 
scheduling

Date 2011 2013 2007

Notes

● Based on StarSs and OpenMP
● Builds graph at runtime
● Task-dependency graph
● Each task is executed once

● Difficult programming
● Work stealing across 
nodes and threads
● One scheduler on each 
thread/node
● Overhead of runtime 
observed for fine-grain 
scheduling

● Rich feature set for 
general purpose 
parallelism
● Data-dependency graph
● Each task can execute 
multiple times
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• Dynamic scheduling (all)

– Adds runtime overhead

• Centralized Runtime (OmpSs, TBB)

– Single-point of  access

• Scale up to 24 cores (all)

– None is tested to more cores

• Runtime Dependency resolution (OmpSs)

– Adds runtime overhead

• Difficult Programming (SWARM, TBB)

– Macro-based programming

– Programmer responsible for dependencies, updates, etc.

• Shared memory (OmpSs, TBB, SWARM)

– But need hardware support for cache-coherence

Cache-

coherence 

can’t scale!
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• Data-Driven Multithreading Model

– Data-Flow execution

– Thread-based

– Synchronization (Data-flow) graph

• No locks

• No barriers 

• Only dependencies

– Control-Flow execution within a thread

• Exploit inherent architecture & compiler optimizations

  Loop

1 2 N

S

. . .

T2

T3 T4

T5



DDM Programming Systems
Characteristics of 

Dataflow 
Implementations

D2NOW TFlux DDM-VMc DDM-VMs DDM-VMd DDMFPGA TFluxSCC TFluxTM

TSU Implementation 
(Software / Hardware)   

Hardware Software Hardware Software Software Software Hardware Software Software

Scheduling Policy 
(Static / Dynamic)

- Static
Static & 
Dynamic

Static & 
Dynamic 

Static
Static & 
Dynamic

Static Static

Memory Model 
(Shared / Private)

Distributed 
Shared 

Memory
Shared Private Shared Private Shared

Shared Data 
/ Distributed 

Runtime
Shared

Needs cache-coherency - Yes No Yes Yes Yes No Yes

Number of cores/threads 
tested

32 6 27 6 SPEs + 1 PPE 12
12 cores x 2 

nodes
8 48 12

Max Speedup achieved 26 5.9 25 Almost Linear 9.6
9.6 (SMT) / 
16 (Distr)

7.96 48 6.2

How dependencies are 
expressed

macros Directives macros macros macros macros Directives Directives

Contributions

●
CacheFlow
● 1st DDM 
Simulated 
Hardware 
Distributed

● 1st SMP Software 
implementation
● 1st full system 
simulation
● Complete & Portable
● Directive-based 
programming

● 1st heterog. 
Implement.
● Software 
CacheFlow 
Implement.

● 1st

Software 
CacheFlow

● 1st

software 
distributed

● 1st

hardware 
DDM  FPGA

● 1st many-
core 
software 
DDM 

● 1st integrat. 
of a DDM 
implementation 
with another 
model

Date 2000 2008 2011 2010 2013 2014
2014 &

2015
2011 &

2015
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• Centralized Runtime (all – except TFluxSCC)

– Single-point of  communication

• Need hardware cache-coherence (all – except TFluxSCC)

• Global SG (all – except TFluxSCC)

– Requires protection (e.g. locking)

• Not scalable!

– TFluxSCC uses one SG instance for every core

• Memory expensive!
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• Motivation

• Contributions

• Related Work

– Data-flow-based Programming Systems

– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline



SWitches Programming System
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Dataflow Execution 

Model: DDM

Non-coherent 

Shared Memory 

Many-core

Runtime SG:

Local-only

Runtime 

Communication:

Distributed & Shared
Scheduling:

Static Automatic

Programming: 

OpenMP 4.0 

Pragma Directives

Accelerators: 

GPU, Xeon Phi

Software 

Transactional 

Memory Support
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• SWitches Programming System

• Preliminary Work
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From TFlux to SWitches - TFluxSoft
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• Software implementation of  the DDM model

– For shared-memory multi-cores

– Shared memory for updates exchange

• Global Synchronization Graph (SG)

– Locking is required

– Cache-coherence is required!

• Centralized scheduling unit (TSU)

– Single-point of  thread updates 



Intel Single-chip Cloud Computing
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• 48-core experimental processor

• Private non-coherent caches

• On-chip Message Passing Buffer (MPB)

• Shared off-chip main memory - Uncacheable

– No locking!
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From TFlux to SWitches - TFluxSCC
‡
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• TFluxSCC Memory model

– MPB for TSU updates

– Shared off-chip for application data

‡ Diavastos, Andreas, Giannos Stylianou, and Pedro Trancoso. "TFluxSCC: Exploiting Performance on Future Many-Core Systems through 

Data-Flow."Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on. IEEE, 2015.

– Simultaneous access is not allowed on shared data in DDM

– Caching global data is enabled in TFluxSCC

– Flush caches to ensure write-back is complete
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TFluxSCC
‡
Runtime Implementation
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• Fully decentralized runtime system

• One TSU on every application thread

– Multiple communication points

• Each core has it’s own instance of  SG

– No locking 

‡ Diavastos, Andreas, Giannos Stylianou, and Pedro Trancoso. "TFluxSCC: Exploiting Performance on Future Many-Core Systems through 

Data-Flow."Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on. IEEE, 2015.



TFluxSoft on Intel Xeon Phi‡
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• Intel Many Integrated Core Architecture

– Knights Corner series

• 61 cores interconnected with on-die bidirectional ring

• 4-threaded cores (totaling 244 hardware threads)

• X86 ISA with 64-bit addressing

• 32 MB LLC – shared, cache-coherent

– 512KB L2 per core

‡ 
We would like to thank The Cyprus Institute for letting use their Xeon Phi cluster for our experiments
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Results: TFluxSCC & TFluxSoft
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• TFluxSCC: Distributed TSU and local-SG

– Multiple communication points for better scalability

– Avoid monitoring & locking of  shared data

• TFluxSoft: Centralized TSU and global-SG

– Single point of  synchronization 

– Contention on shared SG by all executing thread



From TFlux to SWitches - TFluxTM
‡
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• Integrated Transactional Memory support

– Flexibility of  thread-based DDM

• Provide atomic operations

• Exploit runtime parallelism

– Using speculative parallel execution

• Support more application

‡ A. Diavastos, P. Trancoso, M. Lujan and I. Watson, "Integrating Transactions into the Data-Driven Multi-threading Model Using the 

TFlux Platform," International Journal of Parallel Programming, pp. 1-21, 2015
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Conclusions of  TFlux experience
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• Positives:
– Software implementation

• Portable across commodity hardware systems

– Thread-based granularity

• Apply architectural & compiler optimization within threads

– Pipelining, unrolling, vectorization, etc.

– Flexibility of  DDM

• Integrate multiple models in one system

– Shared-Memory model

• Makes programming easier!

– All-the-time coherent execution

• Data dependencies prohibit simultaneous access on shared data

• No cache-coherence needed!!



Conclusions of  TFlux experience
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• Negatives:

– Large TSU structures (SG)

• High memory footprint

• Large initialization time

• 65% of  total execution time is used for TSU allocation & initialization

– Shared SG

• Locking & Hardware coherence support

– Centralized TSU

• Single-point of  communication

• 30% of  time is spent in the TSU 

– This will increase with the number of  cores

– Most of  the time it’s not useful operations



SWitches: Key Characteristics
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• Connect Producers – Consumers with 
switches
– A unique switch for every producer

– A producer turns ON it’s switches when completed

– A consumer starts when all it’s producers switches 
are ON

– Switches are boolean C/C++ data types

• Decentralized SG & Runtime
– Single writer / Multiple readers (for every switch)

– No locking needed

– Low overhead notifications 

• Use shared-memory
– No cache-coherence support needed!
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SWitches Evaluation: 12-core multicore
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• MMULT: Good scalability
– TFlux looses performance at 12 cores (+1 TSU thread)

• RK4: TFlux looses performance 
– TFlux improves execution up to 8 cores

– Too many TFlux threads 

– Too large SG shared among threads
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SWitches Evaluation: 60-core Xeon Phi
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• MMULT: Good scalability

– SWitches is slightly slower than OpenMP & TFlux (difference is negligible)

• RK4: TFlux is ≈ 30× slower

– Centralized TSU becomes a communication bottleneck

– Locking global SG with 240 threads is expensive!
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SWitches Profiling: Lines of  Code
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• TFlux produces on average 6× more code

– Calls to the runtime system

– More code to execute → More execution time
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SWitches Profiling: Memory Usage

4124th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• The more threads we use the more memory each system needs

• TFlux on average requires more memory for SG
– SG is created regardless of  the # of  cores used

– SWitches creates SG info using the # of  cores used (less cores → less info)

– Switches are less memory demanding (boolean)

– OpenMP & SWitches use a chunk-based technique to increase/decrease 
granularity & reduce re-scheduling overheads
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SWitches Profiling: Scale beyond…
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• TFlux: Locking of  global SG & sharing among 512 threads!

• TFlux: Context switching interferes with centralized TSU (updates delayed)

• OpenMP: Also uses a centralized runtime

• SWitches: Decentralized runtime & local SG!!
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– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline
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Future Direction of  Work
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• Implement & test more applications

• Parallel threads acceleration

– GPUs

– FPGAs

• Test SWitches on HPC systems

– In collaboration with message-passing systems

– Performance scalability on multi-node systems

– e.g. SWitches for intra-node & MPI for inter-node

– Test real HPC scientific applications



Example execution of  SWitches
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