
Department of  Computer Science, University of  Cyprus
CASPER Group: Computer Architecture, Systems and Performance Evaluation Research Group 

Andreas Diavastos
diavastos@cs.ucy.ac.cy

Advisor: Pedro Trancoso

Many-core Design for Data-Flow 

Execution
Using the SWitches Prototype Implementation

mailto:diavastos@cs.ucy.ac.cy


Introduction

224th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Multi-cores:

– 2 – 16 cores

– Designed for small-scale parallelism & for sequential performance

• Many-cores:

– 10s – 100s – 1000s cores

– Design for large-scale parallelism ONLY!

– Sequential programs will run much slower!

• If  they can execute



Introduction

24th March 2016

Many-core Design for Data-Flow 

Execution:          Using the SWitches 

Prototype Implementation

3

Control-flow Data-flow



Introduction

24th March 2016

Many-core Design for Data-Flow 

Execution:          Using the SWitches 

Prototype Implementation

4



What is parallelism?

524th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

Serial Processor Parallel Processor

• Many processors executing instructions from the same 
program in parallel

• Instruction execution time is the same

• Program execution time is less!!



What is cache-coherence?

624th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

B = A / 2

A = 10

A = A + 1

B = A * 2

Memory

CPU

Cache

Memory

CPU 0

Cache

CPU 1

Cache

CPU 2

Cache

CPU 3

Cache

A

100 cycles

15 cycles

B = A / 2

A

A = 10

B = A * 2

A = A + 1

Serial Processor Parallel Processor

AAAA

A = 20

Cache-coherence 
Mechanism



Motivation

724th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Many-core processing for increased parallelism
– HPC systems already include many-cores

• More parallelism → More performance

• Many-cores today (and tomorrow?)
– Cache-coherent Shared Memory

• Can they scale?

– Distributed Memory Clustered

• Are they efficient for fine-grain parallelism?

• Software Parallel Programming Systems
– Shared-memory

• Good on multi-cores, not evaluated on many-cores

• Need cache-coherence!

– Distributed-memory

• Good for large-scale distributed systems

• Programming is becoming an impossible task



We need:

824th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Scalable Hardware:

– A non-coherent shared-memory many-core

• Scalable Software:

– Easy programming

– Non-blocking execution

– Doesn’t need cache-coherence support

– Exploits large amounts of  fine-grain parallelism

Scale performance on non-coherent 

shared-memory many-core processors

Data-flow!!



Expected Contributions:

924th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Non-coherent shared-memory many-core design

– Simulation-based

– With 100s of  cores

• A software parallel programming system

– Based on data-flow execution

– Scale performance to 100s of  cores

– Validate to real hardware

– Support for conventional programming APIs 

• OpenMP



Outline

1024th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Motivation

• Contributions

• Related Work

– Data-flow-based Programming Systems

– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline



Outline

1124th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Motivation

• Contributions

• Related Work

– Data-flow-based Programming Systems

– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline



Data-flow Programming Systems
Characteristics of Dataflow 

Implementations
OmpSs

Triggered 
Instructions

Serialization 
Sets

OpenDF DTT / CDTT SEED
Statically 

Sequential
WaveScalar SWARM Intel TBB CnC Maxeler

Implementation 
(Software / Hardware)   

Software Hardware Software Hardware Software Hardware Software Hardware Software Software Software Hardware

Scheduling Policy 
(Static / Dynamic)

Dynamic Dynamic Dynamic - Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Dynamic - uses 

Intel TBB
Static

Memory Model 
(Shared / Private)

Shared / GPU Shared Shared - Shared Shared Shared Shared
Shared / 

Distributed
Shared Shared -

Needs cache-coherency Yes No Yes - - - Yes Yes Yes Yes Yes -

Number of cores/threads tested 24 32 32 - runtime - 32
128

Simulation
24 8 8 -

Max Speedup achieved
depends on 
application

22 16 -
1.46 / single 

core
- 16 83 8 8 8 230

How dependencies are 
expressed

directives in(), 
out(), inout()

Inserted 
Triggers

writable & 
read_only data 

variables
-

macro-based 
triggers

-

functions, 
shared objects, 
read/write sets, 

sequential 
segments

tokens/tags
C-macros API to 

represent 
Codelets

macro-API / 
explicit task 

dependencies

Inputs (gets()), 
Outputs (puts())

Kernels & 
Managers, 

Input & Output 
vars.

Programming Language C / C++ C / C++ C++ CAL Dataflow C / C++ - C++
Supports 

imperative 
languages

C C++
C++, Java, .NET, 

Haskell
Java with 

MaxCompiler

Contributions

Single 
programming 

model for 
homogeneous & 
heterogeneous 
architectures

● Spatial accel. w. 
8x greater area-
performa. than 

GPPs
● Less instr. in 

critical path over 
PC-based spatial 

architectures 

Prometheus C++ 
library that 
implements 

Serialization Sets

Implementation of 
MPEG RVC

decoder on CAL 
dataflow model

● High redundant 
code in apps

● Data-triggered 
threads

● Architectural 
support for DTT

● High memory 
parallelism, 
instruction 

parallelism and 
branch 

unpredictability is 
highly profitable 

for dataflow 
execution

C++ Software 
runtime library

● New dataflow 
ISA

● Less area 
occupied for logic

● More 
performance/area

● Unified single-, 
multi-node 
interface,

transparent to 
the programmer

● Parallel 
algorithms and 
data structures

● Scalable 
memory allocation 

and task 
scheduling

● CnC semantics w 
proof of 

determinism
● Exploit several 

types of 
parallelism

● Performance 
scalability

Less silicon area, 
less power 

consumption:
No 

instructions/instr. 
decode logic

No branch predict.
No GP caches

Conference / Date PPL 2011 ISCA 2013 PPoPP 2009
ACM SIGARCH

2008
HPCA 2009 ISCA 2015 MICRO 2011

ACM 
Transactions 

2007
2013 2007 2011

ACM SIGARCH
2011

Notes

● Based on StarSs 
and OpenMP

● Builds graph at 
runtime
● Task-

dependency graph
● Each task is 
executed once

● Using 
scratchpad 

memory
● Dynamic 
Instruction 
reordering

● FPGA Implem.
● New ISA 
extentions

● Supports all 
types of 

parallelism (Data, 
Task, Pipeline, 
Embarrassing)

● Not better than 
OpenMP or

Pthreads

Produces VHDL
code

● Remove 
redundant 

unnecessary 
computation
● Thread 

generation based 
on address data 

changes

Switching 
execution from 

OOO to dataflow 
at runtime based 

on application 
needs

● Based on 
Prometheus 
runtime of 

Serialization Sets
● This is the same 

as Serialization 
Sets

● Only measure 
the time for the 
parallel phase 

● Very difficult 
programming
● Work stealing 

across nodes and 
threads

● One scheduler 
on each 

thread/node, 
managing several 

codelets
● Overhead of 

runtime observed 
for fine-grain 

scheduling

● Rich feature set 
for general 

purpose 
parallelism
● Data-

dependency graph
● Each task can 

execute multiple 
times

● Comparison only 
with Pthreads

● Different system 
for each 

application
● CnC is a model 
that uses other 

runtime systems

-



Data-flow Programming Systems
Characteristics of Dataflow 

Implementations
OmpSs

Triggered 
Instructions

Serialization 
Sets

OpenDF DTT / CDTT SEED
Statically 

Sequential
WaveScalar SWARM Intel TBB CnC Maxeler

Implementation 
(Software / Hardware)   

Software Hardware Software Hardware Software Hardware Software Hardware Software Software Software Hardware

Scheduling Policy 
(Static / Dynamic)

Dynamic Dynamic Dynamic - Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Dynamic - uses 

Intel TBB
Static

Memory Model 
(Shared / Private)

Shared / GPU Shared Shared - Shared Shared Shared Shared
Shared / 

Distributed
Shared Shared -

Needs cache-coherency Yes No Yes - - - Yes Yes Yes Yes Yes -

Number of cores/threads tested 24 32 32 - runtime - 32
128

Simulation
24 8 8 -

Max Speedup achieved
depends on 
application

22 16 -
1.46 / single 

core
- 16 83 8 8 8 230

How dependencies are 
expressed

directives in(), 
out(), inout()

Inserted 
Triggers

writable & 
read_only data 

variables
-

macro-based 
triggers

-

functions, 
shared objects, 
read/write sets, 

sequential 
segments

tokens/tags
C-macros API to 

represent 
Codelets

macro-API / 
explicit task 

dependencies

Inputs (gets()), 
Outputs (puts())

Kernels & 
Managers, 

Input & Output 
vars.

Programming Language C / C++ C / C++ C++ CAL Dataflow C / C++ - C++
Supports 

imperative 
languages

C C++
C++, Java, .NET, 

Haskell
Java with 

MaxCompiler

Contributions

Single 
programming 

model for 
homogeneous & 
heterogeneous 
architectures

● Spatial accel. w. 
8x greater area-
performa. than 

GPPs
● Less instr. in 

critical path over 
PC-based spatial 

architectures 

Prometheus C++ 
library that 
implements 

Serialization Sets

Implementation of 
MPEG RVC

decoder on CAL 
dataflow model

● High redundant 
code in apps

● Data-triggered 
threads

● Architectural 
support for DTT

● High memory 
parallelism, 
instruction 

parallelism and 
branch 

unpredictability is 
highly profitable 

for dataflow 
execution

C++ Software 
runtime library

● New dataflow 
ISA

● Less area 
occupied for logic

● More 
performance/area

● Unified single-, 
multi-node 
interface,

transparent to 
the programmer

● Parallel 
algorithms and 
data structures

● Scalable 
memory allocation 

and task 
scheduling

● CnC semantics w 
proof of 

determinism
● Exploit several 

types of 
parallelism

● Performance 
scalability

Less silicon area, 
less power 

consumption:
No 

instructions/instr. 
decode logic

No branch predict.
No GP caches

Date PPL 2011 ISCA 2013 PPoPP 2009
ACM SIGARCH

2008
HPCA 2009 ISCA 2015 MICRO 2011

ACM 
Transactions 

2007
2013 2007 2011

ACM SIGARCH
2011

Notes

● Based on StarSs 
and OpenMP

● Builds graph at 
runtime
● Task-

dependency graph
● Each task is 
executed once

● Using 
scratchpad 

memory
● Dynamic 
Instruction 
reordering

● FPGA Implem.
● New ISA 
extentions

● Supports all 
types of 

parallelism (Data, 
Task, Pipeline, 
Embarrassing)

● Not better than 
OpenMP or

Pthreads

Produces VHDL
code

● Remove 
redundant 

unnecessary 
computation
● Thread 

generation based 
on address data 

changes

Switching 
execution from 

OOO to dataflow 
at runtime based 

on application 
needs

● Based on 
Prometheus 
runtime of 

Serialization Sets
● This is the same 

as Serialization 
Sets

● Only measure 
the time for the 
parallel phase 

● Very difficult 
programming
● Work stealing 

across nodes and 
threads

● One scheduler 
on each 

thread/node, 
managing several 

codelets
● Overhead of 

runtime observed 
for fine-grain 

scheduling

● Rich feature set 
for general 

purpose 
parallelism
● Data-

dependency graph
● Each task can 

execute multiple 
times

● Comparison only 
with Pthreads

● Different system 
for each 

application
● CnC is a model 
that uses other 

runtime systems

-



Data-flow Programming Systems
Characteristics of Dataflow 

Implementations
OmpSs Serialization Sets DTT / CDTT

Statically 
Sequential

SWARM Intel TBB CnC

Implementation 
(Software / Hardware)   

Software Software Software Software Software Software Software

Scheduling Policy 
(Static / Dynamic)

Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Dynamic - uses 

Intel TBB

Memory Model 
(Shared / Private)

Shared / GPU Shared Shared Shared
Shared / 

Distributed
Shared Shared

Needs cache-coherency Yes Yes - Yes Yes Yes Yes

Number of cores/threads tested 24 32 runtime 32 24 8 8

Max Speedup achieved
depends on 
application

16 1.46 / single core 16 8 8 8

How dependencies are expressed
directives in(), 
out(), inout()

writable & 
read_only data 

variables

macro-based 
triggers

functions, shared 
objects, read/write 

sets, sequential 
segments

C-macros API to 
represent Codelets

macro-API / 
explicit task 

dependencies

Inputs (gets()), 
Outputs (puts())

Programming Language C / C++ C++ C / C++ C++ C C++
C++, Java, .NET, 

Haskell

Contributions

Single programming 
model for 

homogeneous & 
heterogeneous 
architectures

Prometheus C++ 
library that 
implements 

Serialization Sets

● High redundant 
code in apps

● Data-triggered 
threads

● Architectural 
support for DTT

C++ Software 
runtime library

● Unified single-, 
multi-node interface,

transparent to 
the programmer

● Parallel algorithms 
and data structures
● Scalable memory 
allocation and task 

scheduling

● CnC semantics w 
proof of determinism

● Exploit several 
types of parallelism
● Performance 

scalability

Date PPL 2011 PPoPP 2009 HPCA 2009 MICRO 2011 2013 2007
ACM SIGARCH

2011

Notes

● Based on StarSs 
and OpenMP

● Builds graph at 
runtime

● Task-dependency 
graph

● Each task is 
executed once

● Supports all types 
of parallelism (Data, 

Task, Pipeline, 
Embarrassing)

● Not better than 
OpenMP or Pthreads

● Remove redundant 
unnecessary 
computation

● Thread generation 
based on address 

data changes

● Based on 
Prometheus runtime 
of Serialization Sets
● This is the same as 

Serialization Sets

● Very difficult 
programming
● Work stealing 

across nodes and 
threads

● One scheduler on 
each thread/node, 
managing several 

codelets
● Overhead of 

runtime observed for 
fine-grain scheduling

● Rich feature set for 
general purpose 

parallelism
● Data-dependency 

graph
● Each task can 

execute multiple 
times

● Comparison only 
with Pthreads

● Different system 
for each application
● CnC is a model that 

uses other runtime 
systems



Data-flow Programming Systems
Characteristics of Dataflow 

Implementations
OmpSs Serialization Sets DTT / CDTT

Statically 
Sequential

SWARM Intel TBB CnC

Implementation 
(Software / Hardware)   

Software Software Software Software Software Software Software

Scheduling Policy 
(Static / Dynamic)

Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Dynamic - uses 

Intel TBB

Memory Model 
(Shared / Private)

Shared / GPU Shared Shared Shared
Shared / 

Distributed
Shared Shared

Needs cache-coherency Yes Yes - Yes Yes Yes Yes

Number of cores/threads tested 24 32 runtime 32 24 8 8

Max Speedup achieved
depends on 
application

16 1.46 / single core 16 8 8 8

How dependencies are expressed
directives in(), 
out(), inout()

writable & 
read_only data 

variables

macro-based 
triggers

functions, shared 
objects, read/write 

sets, sequential 
segments

C-macros API to 
represent Codelets

macro-API / 
explicit task 

dependencies

Inputs (gets()), 
Outputs (puts())

Programming Language C / C++ C++ C / C++ C++ C C++
C++, Java, .NET, 

Haskell

Contributions

Single programming 
model for 

homogeneous & 
heterogeneous 
architectures

Prometheus C++ 
library that 
implements 

Serialization Sets

● High redundant 
code in apps

● Data-triggered 
threads

● Architectural 
support for DTT

C++ Software 
runtime library

● Unified single-, 
multi-node interface,

transparent to 
the programmer

● Parallel algorithms 
and data structures
● Scalable memory 
allocation and task 

scheduling

● CnC semantics w 
proof of determinism

● Exploit several 
types of parallelism
● Performance 

scalability

Date PPL 2011 PPoPP 2009 HPCA 2009 MICRO 2011 2013 2007
ACM SIGARCH

2011

Notes

● Based on StarSs 
and OpenMP

● Builds graph at 
runtime

● Task-dependency 
graph

● Each task is 
executed once

● Supports all types 
of parallelism (Data, 

Task, Pipeline, 
Embarrassing)

● Not better than 
OpenMP or Pthreads

● Remove redundant 
unnecessary 
computation

● Thread generation 
based on address 

data changes

● Based on 
Prometheus runtime 
of Serialization Sets
● This is the same as 

Serialization Sets

● Very difficult 
programming
● Work stealing 

across nodes and 
threads

● One scheduler on 
each thread/node, 
managing several 

codelets
● Overhead of 

runtime observed for 
fine-grain scheduling

● Rich feature set for 
general purpose 

parallelism
● Data-dependency 

graph
● Each task can 

execute multiple 
times

● Comparison only 
with Pthreads

● Different system 
for each application
● CnC is a model that 

uses other runtime 
systems



Data-flow Programming Systems
Characteristics of Dataflow Implementations OmpSs SWARM Intel TBB

Implementation (Software / Hardware)   Software Software Software

Scheduling Policy (Static / Dynamic) Dynamic Dynamic Dynamic

Memory Model (Shared / Private) Shared / GPU Shared / Distributed Shared

Needs cache-coherency Yes Yes Yes

Number of cores/threads tested 24 24 8

Max Speedup achieved depends on application 8 8

How dependencies are expressed directives in(), out(), inout()
C-macros API to represent 

Codelets
macro-API / explicit task 

dependencies

Programming Language C / C++ C C++

Contributions
Single programming model for 
homogeneous & heterogeneous 
architectures

● Unified single-, multi-
node interface,
transparent to 
the programmer

● Parallel algorithms and 
data structures
● Scalable memory 
allocation and task 
scheduling

Date 2011 2013 2007

Notes

● Based on StarSs and OpenMP
● Builds graph at runtime
● Task-dependency graph
● Each task is executed once

● Difficult programming
● Work stealing across 
nodes and threads
● One scheduler on each 
thread/node
● Overhead of runtime 
observed for fine-grain 
scheduling

● Rich feature set for 
general purpose 
parallelism
● Data-dependency graph
● Each task can execute 
multiple times



Data-flow Programming Systems
Characteristics of Dataflow Implementations OmpSs SWARM Intel TBB

Implementation (Software / Hardware)   Software Software Software

Scheduling Policy (Static / Dynamic) Dynamic Dynamic Dynamic

Memory Model (Shared / Private) Shared / GPU Shared / Distributed Shared

Needs cache-coherency Yes Yes Yes

Number of cores/threads tested 24 24 8

Max Speedup achieved depends on application 8 8

How dependencies are expressed directives in(), out(), inout()
C-macros API to represent 

Codelets
macro-API / explicit task 

dependencies

Programming Language C / C++ C C++

Contributions
Single programming model for 
homogeneous & heterogeneous 
architectures

● Unified single-, multi-
node interface,
transparent to 
the programmer

● Parallel algorithms and 
data structures
● Scalable memory 
allocation and task 
scheduling

Date 2011 2013 2007

Notes

● Based on StarSs and OpenMP
● Builds graph at runtime
● Task-dependency graph
● Each task is executed once

● Difficult programming
● Work stealing across 
nodes and threads
● One scheduler on each 
thread/node
● Overhead of runtime 
observed for fine-grain 
scheduling

● Rich feature set for 
general purpose 
parallelism
● Data-dependency graph
● Each task can execute 
multiple times



Data-flow Programming Systems
Characteristics of Dataflow Implementations OmpSs SWARM Intel TBB

Implementation (Software / Hardware)   Software Software Software

Scheduling Policy (Static / Dynamic) Dynamic Dynamic Dynamic

Memory Model (Shared / Private) Shared / GPU Shared / Distributed Shared

Needs cache-coherency Yes Yes Yes

Number of cores/threads tested 24 24 8

Max Speedup achieved depends on application 8 8

How dependencies are expressed directives in(), out(), inout()
C-macros API to represent 

Codelets
macro-API / explicit task 

dependencies

Programming Language C / C++ C C++

Contributions
Single programming model for 
homogeneous & heterogeneous 
architectures

● Unified single-, multi-
node interface,
transparent to 
the programmer

● Parallel algorithms and 
data structures
● Scalable memory 
allocation and task 
scheduling

Date 2011 2013 2007

Notes

● Based on StarSs and OpenMP
● Builds graph at runtime
● Task-dependency graph
● Each task is executed once

● Difficult programming
● Work stealing across 
nodes and threads
● One scheduler on each 
thread/node
● Overhead of runtime 
observed for fine-grain 
scheduling

● Rich feature set for 
general purpose 
parallelism
● Data-dependency graph
● Each task can execute 
multiple times



Data-flow Programming Systems
Characteristics of Dataflow Implementations OmpSs SWARM Intel TBB

Implementation (Software / Hardware)   Software Software Software

Scheduling Policy (Static / Dynamic) Dynamic Dynamic Dynamic

Memory Model (Shared / Private) Shared / GPU Shared / Distributed Shared

Needs cache-coherency Yes Yes Yes

Number of cores/threads tested 24 24 8

Max Speedup achieved depends on application 8 8

How dependencies are expressed directives in(), out(), inout()
C-macros API to represent 

Codelets
macro-API / explicit task 

dependencies

Programming Language C / C++ C C++

Contributions
Single programming model for 
homogeneous & heterogeneous 
architectures

● Unified single-, multi-
node interface,
transparent to 
the programmer

● Parallel algorithms and 
data structures
● Scalable memory 
allocation and task 
scheduling

Date 2011 2013 2007

Notes

● Based on StarSs and OpenMP
● Builds graph at runtime
● Task-dependency graph
● Each task is executed once

● Difficult programming
● Work stealing across 
nodes and threads
● One scheduler on each 
thread/node
● Overhead of runtime 
observed for fine-grain 
scheduling

● Rich feature set for 
general purpose 
parallelism
● Data-dependency graph
● Each task can execute 
multiple times



Data-flow Programming Systems
Characteristics of Dataflow Implementations OmpSs SWARM Intel TBB

Implementation (Software / Hardware)   Software Software Software

Scheduling Policy (Static / Dynamic) Dynamic Dynamic Dynamic

Memory Model (Shared / Private) Shared / GPU Shared / Distributed Shared

Needs cache-coherency Yes Yes Yes

Number of cores/threads tested 24 24 8

Max Speedup achieved depends on application 8 8

How dependencies are expressed directives in(), out(), inout()
C-macros API to represent 

Codelets
macro-API / explicit task 

dependencies

Programming Language C / C++ C C++

Contributions
Single programming model for 
homogeneous & heterogeneous 
architectures

● Unified single-, multi-
node interface,
transparent to 
the programmer

● Parallel algorithms and 
data structures
● Scalable memory 
allocation and task 
scheduling

Date 2011 2013 2007

Notes

● Based on StarSs and OpenMP
● Builds graph at runtime
● Task-dependency graph
● Each task is executed once

● Difficult programming
● Work stealing across 
nodes and threads
● One scheduler on each 
thread/node
● Overhead of runtime 
observed for fine-grain 
scheduling

● Rich feature set for 
general purpose 
parallelism
● Data-dependency graph
● Each task can execute 
multiple times



Conclusions on Data-flow Systems

2124th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Dynamic scheduling (all)

– Adds runtime overhead

• Centralized Runtime (OmpSs, TBB)

– Single-point of  access

• Scale up to 24 cores (all)

– None is tested to more cores

• Runtime Dependency resolution (OmpSs)

– Adds runtime overhead

• Difficult Programming (SWARM, TBB)

– Macro-based programming

– Programmer responsible for dependencies, updates, etc.

• Shared memory (OmpSs, TBB, SWARM)

– But need hardware support for cache-coherence

Cache-

coherence 

can’t scale!



The DDM Model

2224th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Data-Driven Multithreading Model

– Data-Flow execution

– Thread-based

– Synchronization (Data-flow) graph

• No locks

• No barriers 

• Only dependencies

– Control-Flow execution within a thread

• Exploit inherent architecture & compiler optimizations

  Loop

1 2 N

S

. . .

T2

T3 T4

T5



DDM Programming Systems
Characteristics of 

Dataflow 
Implementations

D2NOW TFlux DDM-VMc DDM-VMs DDM-VMd DDMFPGA TFluxSCC TFluxTM

TSU Implementation 
(Software / Hardware)   

Hardware Software Hardware Software Software Software Hardware Software Software

Scheduling Policy 
(Static / Dynamic)

- Static
Static & 
Dynamic

Static & 
Dynamic 

Static
Static & 
Dynamic

Static Static

Memory Model 
(Shared / Private)

Distributed 
Shared 

Memory
Shared Private Shared Private Shared

Shared Data 
/ Distributed 

Runtime
Shared

Needs cache-coherency - Yes No Yes Yes Yes No Yes

Number of cores/threads 
tested

32 6 27 6 SPEs + 1 PPE 12
12 cores x 2 

nodes
8 48 12

Max Speedup achieved 26 5.9 25 Almost Linear 9.6
9.6 (SMT) / 
16 (Distr)

7.96 48 6.2

How dependencies are 
expressed

macros Directives macros macros macros macros Directives Directives

Contributions

●
CacheFlow
● 1st DDM 
Simulated 
Hardware 
Distributed

● 1st SMP Software 
implementation
● 1st full system 
simulation
● Complete & Portable
● Directive-based 
programming

● 1st heterog. 
Implement.
● Software 
CacheFlow 
Implement.

● 1st

Software 
CacheFlow

● 1st

software 
distributed

● 1st

hardware 
DDM  FPGA

● 1st many-
core 
software 
DDM 

● 1st integrat. 
of a DDM 
implementation 
with another 
model

Date 2000 2008 2011 2010 2013 2014
2014 &

2015
2011 &

2015



Conclusions on DDM Systems

2424th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Centralized Runtime (all – except TFluxSCC)

– Single-point of  communication

• Need hardware cache-coherence (all – except TFluxSCC)

• Global SG (all – except TFluxSCC)

– Requires protection (e.g. locking)

• Not scalable!

– TFluxSCC uses one SG instance for every core

• Memory expensive!



Outline

2524th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Motivation

• Contributions

• Related Work

– Data-flow-based Programming Systems

– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline



SWitches Programming System

2624th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

Dataflow Execution 

Model: DDM

Non-coherent 

Shared Memory 

Many-core

Runtime SG:

Local-only

Runtime 

Communication:

Distributed & Shared
Scheduling:

Static Automatic

Programming: 

OpenMP 4.0 

Pragma Directives

Accelerators: 

GPU, Xeon Phi

Software 

Transactional 

Memory Support



Outline

2724th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Motivation

• Contributions

• Related Work

– Data-flow-based Programming Systems

– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline



From TFlux to SWitches - TFluxSoft

2824th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Software implementation of  the DDM model

– For shared-memory multi-cores

– Shared memory for updates exchange

• Global Synchronization Graph (SG)

– Locking is required

– Cache-coherence is required!

• Centralized scheduling unit (TSU)

– Single-point of  thread updates 



Intel Single-chip Cloud Computing

2924th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• 48-core experimental processor

• Private non-coherent caches

• On-chip Message Passing Buffer (MPB)

• Shared off-chip main memory - Uncacheable

– No locking!

Management Console PC

System 
FPGA

Tile

Tile

R

R

Tile

R

Tile

R 0,0

0,3

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R 5,0

5,3

System Interface

D
IM

M
D

IM
M

D
IM

M
D

IM
M

M
C

M
C

M
C

M
C

Shared off-chip DRAM

Shared on-chip Message Passing Buffer (8KB/core)

Private 
DRAM

L2$
L1
$

CPU0
Private 
DRAM

L2$
L1
$

CPU47

Off-chip 
memory

On-chip 
memory



From TFlux to SWitches - TFluxSCC
‡

3024th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• TFluxSCC Memory model

– MPB for TSU updates

– Shared off-chip for application data

‡ Diavastos, Andreas, Giannos Stylianou, and Pedro Trancoso. "TFluxSCC: Exploiting Performance on Future Many-Core Systems through 

Data-Flow."Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on. IEEE, 2015.

– Simultaneous access is not allowed on shared data in DDM

– Caching global data is enabled in TFluxSCC

– Flush caches to ensure write-back is complete

Shared off-chip DRAM

Shared on-chip Message Passing Buffer (8KB/core)

Private 
DRAM

L2$
L1
$

CPU0
Private 
DRAM

L2$
L1
$

CPU47

Off-chip 
memory

On-chip 
memory

Application 

Data

TSU 

Updates



TFluxSCC
‡
Runtime Implementation

3124th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Fully decentralized runtime system

• One TSU on every application thread

– Multiple communication points

• Each core has it’s own instance of  SG

– No locking 

‡ Diavastos, Andreas, Giannos Stylianou, and Pedro Trancoso. "TFluxSCC: Exploiting Performance on Future Many-Core Systems through 

Data-Flow."Parallel, Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International Conference on. IEEE, 2015.



TFluxSoft on Intel Xeon Phi‡

3224th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Intel Many Integrated Core Architecture

– Knights Corner series

• 61 cores interconnected with on-die bidirectional ring

• 4-threaded cores (totaling 244 hardware threads)

• X86 ISA with 64-bit addressing

• 32 MB LLC – shared, cache-coherent

– 512KB L2 per core

‡ 
We would like to thank The Cyprus Institute for letting use their Xeon Phi cluster for our experiments

Core

L2

Core

L2

GDDR 
MC

. . .

CoreL2

CoreL2

GDDR 
MC

. . .

Core

L2

Core

L2
GDDR 

MC

. . .

Core L2

Core L2

GDDR 
MC

. . .

TDTD

T
D

TD

TDTD

T
D

TD



Results: TFluxSCC & TFluxSoft

3324th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• TFluxSCC: Distributed TSU and local-SG

– Multiple communication points for better scalability

– Avoid monitoring & locking of  shared data

• TFluxSoft: Centralized TSU and global-SG

– Single point of  synchronization 

– Contention on shared SG by all executing thread



From TFlux to SWitches - TFluxTM
‡

3424th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Integrated Transactional Memory support

– Flexibility of  thread-based DDM

• Provide atomic operations

• Exploit runtime parallelism

– Using speculative parallel execution

• Support more application

‡ A. Diavastos, P. Trancoso, M. Lujan and I. Watson, "Integrating Transactions into the Data-Driven Multi-threading Model Using the 

TFlux Platform," International Journal of Parallel Programming, pp. 1-21, 2015

0

1

2

3

4

5

6

7

2 4 8 10 12

Sp
ee

d
u

p

Number of Threads

Lee’s Algorithm

256x256x3-n256 256x256x5-n256 512x512x7-n512



Conclusions of  TFlux experience

3524th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Positives:
– Software implementation

• Portable across commodity hardware systems

– Thread-based granularity

• Apply architectural & compiler optimization within threads

– Pipelining, unrolling, vectorization, etc.

– Flexibility of  DDM

• Integrate multiple models in one system

– Shared-Memory model

• Makes programming easier!

– All-the-time coherent execution

• Data dependencies prohibit simultaneous access on shared data

• No cache-coherence needed!!



Conclusions of  TFlux experience

3624th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Negatives:

– Large TSU structures (SG)

• High memory footprint

• Large initialization time

• 65% of  total execution time is used for TSU allocation & initialization

– Shared SG

• Locking & Hardware coherence support

– Centralized TSU

• Single-point of  communication

• 30% of  time is spent in the TSU 

– This will increase with the number of  cores

– Most of  the time it’s not useful operations



SWitches: Key Characteristics

3724th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Connect Producers – Consumers with 
switches
– A unique switch for every producer

– A producer turns ON it’s switches when completed

– A consumer starts when all it’s producers switches 
are ON

– Switches are boolean C/C++ data types

• Decentralized SG & Runtime
– Single writer / Multiple readers (for every switch)

– No locking needed

– Low overhead notifications 

• Use shared-memory
– No cache-coherence support needed!

T1

T2

T3

T5

  Loop

1 2 N

S

. . .

T2

T3 T4

T5

T4

T6



SWitches Evaluation: 12-core multicore

3824th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• MMULT: Good scalability
– TFlux looses performance at 12 cores (+1 TSU thread)

• RK4: TFlux looses performance 
– TFlux improves execution up to 8 cores

– Too many TFlux threads 

– Too large SG shared among threads

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2 4 6 8 12

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Number of Threads

MMULT

OpenMP TFlux SWitches

0

5

10

15

20

25

30

2 4 6 8 12

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Number of Threads

RK4

OpenMP TFlux SWitches



SWitches Evaluation: 60-core Xeon Phi

3924th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• MMULT: Good scalability

– SWitches is slightly slower than OpenMP & TFlux (difference is negligible)

• RK4: TFlux is ≈ 30× slower

– Centralized TSU becomes a communication bottleneck

– Locking global SG with 240 threads is expensive!

0.0

0.5

1.0

1.5

2.0

1 2 4 8 16 32 60 120 180 240

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Number of Threads

MMULT

OpenMP TFlux SWitches

0

2

4

6

8

10

1 2 4 8 16 32 60 120 180 240

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Number of Threads

RK4

OpenMP TFlux SWitches



SWitches Profiling: Lines of  Code

4024th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• TFlux produces on average 6× more code

– Calls to the runtime system

– More code to execute → More execution time

0

1

2

3

4

5

6

1 2 4 8 16 32 60 120 180 240

N
o

rm
al

iz
ed

 L
in

es
 o

f 
C

o
d

e

Number of Threads

MMULT

SWitches TFlux

0

1

2

3

4

5

6

7

8

1 2 4 8 16 32 60 120 180 240

N
o

rm
al

iz
ed

 L
in

es
 o

f 
C

o
d

e

Number of Threads

RK4

SWitches TFlux



SWitches Profiling: Memory Usage

4124th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• The more threads we use the more memory each system needs

• TFlux on average requires more memory for SG
– SG is created regardless of  the # of  cores used

– SWitches creates SG info using the # of  cores used (less cores → less info)

– Switches are less memory demanding (boolean)

– OpenMP & SWitches use a chunk-based technique to increase/decrease 
granularity & reduce re-scheduling overheads

0

2

4

6

8

10

12

14

1 2 4 8 16 32 60 120 180 240

N
o

rm
al

iz
ed

 m
em

o
ry

 u
sa

ge

Number of Threads

MMULT

OpenMP

TFlux

SWitches

211 75 33 16

0

2

4

6

8

10

12

14

1 2 4 8 16 32 60 120 180 240

N
o

rm
al

iz
ed

 m
em

o
ry

 u
sa

ge

Number of Threads

RK4

OpenMP TFlux SWitches

31



SWitches Profiling: Scale beyond…

4224th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• TFlux: Locking of  global SG & sharing among 512 threads!

• TFlux: Context switching interferes with centralized TSU (updates delayed)

• OpenMP: Also uses a centralized runtime

• SWitches: Decentralized runtime & local SG!!

1

10

100

1000

10000

100000

1 2 4 8 16 32 60 120 180 240 360 512

Ex
e

cu
ti

o
n

 T
im

e 
(m

se
cs

)

Number of Threads

MMULT

OpenMP TFlux Switches

3365

174

89



Outline

4324th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Motivation

• Contributions

• Related Work

– Data-flow-based Programming Systems

– DDM Programming Systems

• SWitches Programming System

• Preliminary Work

• Roadmap – Timeline



Roadmap

SWitches

Dataflow 

Execution Model: 

DDM
Non-coherent

Shared Memory 

Many-core

Runtime SG:

Local-only

Runtime

Communication:

Distributed & Shared
Scheduling:

Static Automatic

Programming: 

OpenMP 4.0 

Pragma Directives

Accelerators: 

GPU, Xeon Phi

Software 

Transactional 

Memory Support

[1] Andreas Diavastos, Pedro Trancoso, Mikel Lujan and Ian Watson. “Integrating Transactions into the Data-Driven Multi-threading Model using the TFlux

Platform”, International Journal of Parallel Programming (IJPP 2015).

[2] Andreas Diavastos, Giannos Stylianou and Pedro Trancoso “TFluxSCC: Exploiting Performance on Future Many-core Systems through Data-Flow”. In the

Proceedings of the 23rd Euromicro International Conference, Distributed and Network-based Processing (PDP 2015).

[3] Panayiotis Petrides, Andreas Diavastos, Constantinos Christofi and Pedro Trancoso. “Scalability and Efficiency of Database Queries on Future Many-core

Systems”. In the Proceedings of the 21st Euromicro International Conference, Distributed and Network-based Processing (PDP 2013).

[4] Andreas Diavastos, Panayiotis Petrides, Gabriel Falcao, Pedro Trancoso. “LDPC Decoding on the Intel SCC”, In the Proceedings of the 20th

Euromicro International Conference, Distributed and Network-based Processing (PDP 2012).

[2, 3, 4]

Completed

Pending

[2]

[2][1]

[1, 2]



Thank You!
CASPER Group

Visit Us: www.cs.ucy.ac.cy/carch/casper

Computer Architecture, Systems and Performance Evaluation Research

List of Publications:

Journals:

1. Andreas Diavastos, Pedro Trancoso, Mikel Lujan and Ian Watson. “Integrating Transactions into the Data-Driven Multi-threading Model using the
TFlux Platform”, International Journal of Parallel Programming (IJPP 2015).

2. Andreas Diavastos, Giannos Stylianou, Giannis Koutsou. “Exploiting Very-Wide Vector Processing for Scientific Applications”. (Article) In Computing in
Science & Engineering (CiSE), Vol. 17, no. 6, Nov/Dec 2015, pp. 83.87.

Conferences & Workshops:

3. Andreas Diavastos, Giannos Stylianou and Pedro Trancoso “TFluxSCC: Exploiting Performance on Future Many-core Systems through Data-Flow”. In
the Proceedings of the 23rd Euromicro International Conference, Distributed and Network-based Processing (PDP 2015).

4. Andreas Diavastos, Giannos Stylianou, Pedro Trancoso. “TFluxSCC: A Case Study for Exploiting Performance in Future Many-core Systems”. (Poster
Paper) In the Proceedings of the 11th ACM Conference on Computing Frontiers, Cagliari, Italy, May 2014.

5. Panayiotis Petrides, Andreas Diavastos, Constantinos Christofi and Pedro Trancoso. “Scalability and Efficiency of Database Queries on Future Many-
core Systems”. In the Proceedings of the 21st Euromicro International Conference, Distributed and Network-based Processing (PDP 2013).

6. Andreas Diavastos, Panayiotis Petrides, Gabriel Falcao, Pedro Trancoso. “LDPC Decoding on the Intel SCC”, In the Proceedings of the 20th Euromicro
International Conference, Distributed and Network-based Processing (PDP 2012).

7. Andreas Diavastos, Pedro Trancoso, Mikel Lujan and Ian Watson. “Integrating Transactions into the Data-Driven Multi-threading Model using the
TFlux Platform”, In the Proceedings of the Data-Flow Execution Models for Extreme Scale Computing Workshop (DFM 2011).

8. Andreas Diavastos, Giannos Stylianou and Giannis Koutsou “Exploiting Very-Wide Vectors on Intel Xeon Phi with Lattice-QCD kernels”. In the
Proceedings of the 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2016).

http://www.cs.ucy.ac.cy/carch/casper


Backup Slides



Serialization Sets

4724th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation



Future Direction of  Work

4824th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

• Implement & test more applications

• Parallel threads acceleration

– GPUs

– FPGAs

• Test SWitches on HPC systems

– In collaboration with message-passing systems

– Performance scalability on multi-node systems

– e.g. SWitches for intra-node & MPI for inter-node

– Test real HPC scientific applications



Example execution of  SWitches

4924th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

T1 T2

T3 T4 T5

T6T7

M

T8

Wait producers

Finished

Ready / Executing



Example execution of  SWitches

5024th March 2016
Many-core Design for Data-Flow Execution:          

Using the SWitches Prototype Implementation

T1 T2

T3 T4 T5

T6T7

M

T8

Wait producers

Finished

Ready / Executing


